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Introduction

OCAL radiant emission from a two-dimensional rectan-gular solid at uniform temperature is analyzed when the
solid refractive index n is greater than 1. Since internal emis-

sion depends on n 2, a large n can provide internal radiation
much larger than blackbody radiation emitted into a vacuum.
Blackbody emission from the boundary is not exceeded be-

cause of internal reflection of part of the outward-directed
energy at the boundary, primarily by total reflection. Energy
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reaching the boundaries, and reflected energy are both as-
sumed diffuse.

Most analyses in the literature for radiating materials with

n > 1 are for plane layers. In a paper _ related to the present

work, radiation from a corner and a semi-infinite slab were

obtained with specular boundaries. The present analysis de-

termines radiating characteristics of a solid with diffuse

boundaries and a rectangular cross section; the third dimen-

sion is long, and so behavior is two-dimensional. The required

equations are derived by starting with expressions from SiegeF ,3
for an absorbing and emitting rectangular medium with n =

1. This provides local boundary heat fluxes from a radiating

medium at uniform temperature, and from enclosing black

boundaries, each at a different uniform temperature, that

radiate to each other through the medium. By adding n 2 fac-

tors to the emission terms in Ref. 2, the relations provide the
emitted fluxes from the medium that are incident on the

boundary. The expressions in Ref. 3 provide the coupling

between local positions on the boundary produced by internal
reflections. This leads to a formulation for the radiated flux

locally transmitted through the boundary. For convenience

the analysis is carried out for a gray solid, but the local emit-

tances can also be applied for spectrally dependent calcula-
tions.

Analysis

A rectangular region, 0 --< x -< d and 0 -< y - b (d > b,

aspect ratio An = d/b), is a semitransparent solid at uniform

temperature TM. There are no surrounding walls, therefore

the sides are directly exposed to an environment at TE. The
solid refractive index is n; for the environment, nE = 1. The

geometry is long normal to the x-y plane, and so its behavior
is two-dimensional. For convenience the derivation is for a

gray solid (absorption coefficient a), but the results for local
emittance along the sides are valid spectrally by using the

emittance corresponding to a_ at each A. The derivation is

carried out initially for TE = 0; then, since the solid is at

uniform temperature, the relations are readily extended for

T_>0.
The energy that leaves the rectangle through its boundary

at a local position is obtained in two parts: energy directly

emitted from within the solid, and energy reflected internally

along the boundary and then reaching the location being con-

sidered. For the first of these, using the relations in Ref. 2,

the flux emitted from a two-dimensional gray rectangular

medium to a local position, X = x/b, along its long side at

Y = y/b = 1 is

qM-L(X) = n2_rT 4 1 - S,_3(BX) - S,_3[B(AR X)]

- B .=0 S°-2[BR'(X' X')] dX' (la)

where RI(X, X') = [(X - X') 2 + 1] _/2, and B = ab (optical

thickness of short side). The notation is S__3 = S_ - $3 and

S,,_z = So - $2, where the S, are integral functions in two-
dimensional radiative transfer. 4,5

Since the solid has n > 1, there are reflections at the internal

interface of the boundary. The local energy fluxes incident

(with flux ql) upon, and leaving, the internal interface are
assumed diffuse; the internal diffuse reflectivity is pl. The

internal flux leaving position X on the long side at Y = 0 is

reflected incident flux, piqi(X). The flux incident at X on the

long side at Y = 1, by transmission through the solid of

reflected energy from the entire interface of the opposite long
side, is then 3

. S,[BR,(X, X')Iqt.-L(X) = P_ '=,,q,(X') RI(X, X') 3 dX' (lb)

In a similar fashion Eq. (lc) is the local flux incident in-

ternally on the long side at Y = 1 by energy reflected inter-

nally from the interfaces of the two short sides and then trans-

mitted through the medium

qS_L(X) = ff X =oq'(Y) Rz(X, Y)] dY

+ (An- X) =0 qi(Y) R13(---_,Y,3r) S3[BR3(X' Y)I dY

0c)

where Rz(X, Y) = [X 2 + (1 - y)2l,n and R3(X, Y) = [(AR

-- X) 2 + (1 - Y)2p a.

The heat fluxes in Eqs. (la-lc) are added, and their sum,

q,(X) = qM+L(X) + qL-L(X) + qs-L(X) is the incident flux

at local X position on the interior of the long side at Y = 1

qi(X) nZ_T_ {= 1 - S,_3(BX) - S,_3[B(AR - X)]

- B ,=l, So 2[BR,(X, X')] dX'

[ ff . S3[BRI(X X')]+ P' '=,, qi(X') RI(X, X') 3 dX'

f_ 1 = yY)3 &[BR2(X,+ X =o q'(Y) R2(X, " Y)] dY

-I

Y X ]
+ (An- X)f_2oqi(r)g_(_ S,IBR (, r)l dr

_1

(2)

Since q_(X) is in the integrals on the right side of Eq. (2),

this equation--along with a similar relation for the short side--
provide a pair of coupled integral equations for qi(X) and

q_(Y) along the internal interfaces of the rectangle sides.
The locally emitted flux leaving the exterior surface equals

the flux incident internally on the boundary and then trans-

mitted through the surface, qe = (1 - #)q, By using this

relation to eliminate q_ in Eq. (2), and place it in terms of qe,

an integral equation is obtained relating the local emittance

eL(X) = qe(X)/trT 4 along the long side, Y = 1, to the local

emittances along the other sides:

f

eL(X) = nZ(1 -- #) /1 - S,-3(BX) - S,-x[B(An
X)]

- B .=,, So_2[BR,(X, X')] dX'

[ fx R S3[BR,(X, X')]+ pi .=o eL(X') R,(X, X') 3 dX'

f_ I-Y+ x =o _s(Y) R_(X, y)3
S3[BR2(X. Y)] dV

fv t 1-Y+ (-An - X) =,l es(Y) R3(X, y)3 S3[BR3(X, Y)] dY]

(3a)
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L

Similarly, the local emittance along the short side at X =

d/b = AR is

f
es(Y) = n2(1 - #) /1 - St_3(BY) - S,_3[B(1 - Y)I

- B ,=,, S,,_2[BR4(Y, Y')] dY'

[fly es(Y') S3[BRa(Y' Y')]+ p_ A_ ,=o R4(Y, y,)3 dY'

f_ AR - X
+ Y =0 eL(X) R.s()(, y-)3 S3[BRs(X' Y)] dX

zn- x ]+ (1 - Y) =0 eL(X) R3(X, y-)3 S3[BR;(X, Y)] dX

(3b)

where R4(Y, Y') = [A_ + (Y - y,)z]u2 and Rs(X, Y) =

[(An - X)'- + y2lt/Z.

After the simultaneous integral equations in Eqs. (3a) and

(3b) are solved numerically for eL(X) and es(Y), the overall

emittance of the rectangle is obtained by integrating the en-

ergy leaving the boundary

en- 1 + An , eL(X) dX + ss(Y) dY (4)

The emittances were derived for TE = 0. Since the solid is

at uniform temperature, the emittances remain the same when

TE > 0. Then, for example, the net local heat loss at a position

on the long side is qL(X) = eL(B, X, AR)o'(T 4 - 7"4).

To extend the results to a nongray medium, the emittances

are applied spectrally. 6 For a spectrally emitting medium

B_ = a_b, and the local spectral flux in wavelength interval

dA emitted through the boundary is dqLL(X ) = F.a.L(Ba, X,

AR)Gb(A, TM) dZ, where cab is the blackbody function. By

integrating over all wavelengths, the net flux lost at a position

on the long side is

f_

qL(X) = Jo SLL(B_' X, AR)IeAb(A, TM) - Gb(A, TE)] dA

(5)

The net heat loss from the entire rectangle is

qn = f_ ea.R(BA, AR)[e.b(A, TM) -- eAb(A, TE)I dA (6)

where S_.R(B,, An) = sR(B, An) from Eq. (4) with B, = B.

The diffuse reflectivity ff on the inside of the surface needed

for solving Eqs. (3a) and (3b) is given by the Fresnel relation s

1 (3n + 1)(n - 1)

pi = 1 - 2n--5 + 6n2( n + 1) 2

+ (n2- 1) 2 (n-l) 2n(n2+2n-l)(n 2 + 1) 3 /" _ - (n 2 + 1)(n 4 1)

8n2(n 4 + 1) /,,(n) (7)
+ (n 2 + 1)(n 4 -1) 2

The simultaneous integral equations in Eqs. (3a) and (3b)
were solved numerically. When n = 1 there are no internal

reflections, and only the first four terms are on the right side.
Results for n = 1 from Ref. 2 were used to begin solving

with n > 1. An iterative method was used by placing this

approximation into the right sides of Eqs. (3a) and (3b)and

integrating to obtain values for the next iteration. The eL(X)

and ss(Y) were evaluated at unevenly spaced intervals along

the boundary with more closely spaced points near the corner.

Cubic splines were used for the s and S_ values to interpolate
intermediate values of the integrands needed in the integra-

tion subroutine. The method converged to e values within
0.001 with 25 iterations or less.

One of the integrals is singular at a corner and requires

special evaluation. With R2 inserted, the third integral on the

right side of Eq. (3a) is

xf=,,Jr 1 - Y
I(X) _ ss(Y) [X 2 + (1 -- Y)213/2

X S3{B[X 2 + (1 - y)2],/2} dY (8)

The I(X) = 0 when X = 0, except at the corner Y = 1,

where I(X) has zeros in both numerator and denominator.

In the limit, X---> 0, Y _ 1, the argument of S3 is zero giving

S3(0) = ½. Then, with the change of variable, s¢ = 1 - Y

If0) = x_,,lim es(1) _ . =o (X 2 + _:2)3/2 d_:

where A is small. The integral is evaluated analytically, and

with A and X equal to zero, I(0) = es(1)/2. This replaces

I(X) when evaluating eL(0) from Eq. (3a).

Results and Discussion

Local emittances for a square, and a rectangle with An =

2, are in Figs. 1 and 2 for n = 1 to 3, and a_b = BA from 0.2

to 4. The integrated average en are in Fig. 3. By using these
emittances the net energy lost from the entire boundary is

computed from Eq. (6) when the surroundings are at uniform

temperature Te.
The local emittance along one-half of one side of a square

is in Fig. 1 as a function of n for a,b = 0.2, 1, and 4. When

the optical thickness is small, a,b = 0.2 (dot-dashed lines),
the emittance is fairly uniform across each side of the square

when n = 1. As n is increased, the local sA increases sub-

stantially at all locations along the side and its uniformity is
increased. For a larger optical thickness, aAb = 4 (dashed

lines), the behavior with increasing n differs from that for

small a,b. When n = 1, e, is substantially smaller near the

corner than along the central portion of the side. The local

s, do not increase uniformly with increasing n. At the corner
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Fig. 1 Local emlttances from the sides of a two-dimensional solid
with a square cross section, as a function of its refractive index and
the optical thickness of a side.
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Fig. 2 Local emittances from the sides of a two-dimensional solid
with a rectangular cross section of aspect ratio 2, as a function of its
refractive index and the optical thickness of the short side.
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Fig. 3 Integrated average emittance from a two-dimensional rectan-
gular solid with aspect ratios 1 and 2 as a function of its refractive
index and the optical thickness of the short side.

they increase for n up to about 2.5; they then decrease as n

becomes larger. At the center of the side, eA decreases with

increasing n. As n is increased, the emittance becomes more
uniform across the side.

Figure 2 gives local e_ along the short and long sides of a

rectangle with A n = 2. The eL(X) and es(Y) behavior with

n and a_b is similar to Fig. 1. At the corner there is a small
difference in the local emittances on the two sides. This dif-

ference is very small when either n or a_,b is large. For large

a_b the behavior in the corner region becomes radiatively

isolated from the other parts of the volume; the eL(X) and

es(Y) variations along the two sides tend to become the same

in the corner region.

The integrated average emittances are in Fig. 3 as a function

of refractive index for AR = 1 and 2; these can be used to

compute the overall heat loss for any TM and TF., and for a

spectral variation of aA. The trends are in accord with those

in Figs. 1 and 2. For small aab, the overall spectral emittance

e,_.R(A) increases as n is increased. For a large aAb this trend

is reversed. For intermediate aab, the overall emittance passes
through a maximum with increasing n.

Conclusions

Local and integrated average spectral emittances are ob-
tained around the boundary of a two-dimensional rectangular

solid at uniform temperature and with a refractive index larger
than one. Radiation at the boundaries is assumed diffuse, and
internal reflections are included. The results show the effect

on emittance of refractive index, optical thickness a_b, and
aspect ratio. For an optically thin region with a_b less than
about 1, the local and overall emission increase as refractive

index increases. For a_b larger than about 2.5 the trend is
reversed, and so increasing n results in decreased emission.
The minimum local emittance occurs at the corners. An in-
creased refractive index causes the local emittance to be more

uniform over each side of the rectangle.
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